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The moving finite element method, an adaptive gridding procedure for systems of partial 
differential equations whose solutions contain steep gradients, has been implemented in a very 
straightforward way. Accurate results can be obtained using fewer nodes than that required by 
fixed mesh solution methods. Performance of the method, using some minor changes to a 
standard ordinary differential equation algorithm, is illustrated with solutions to Burger’s 
equation. c’ 1986 Academic Press, Inc. 

1. INTRODUCTION 

In a deforming finite element framework nodal amplitudes and nodal positions 
are moved continuously in time, minimizing partial differential equation (PDE) 
residuals. The moving finite element method (MFEM) is analogous to the method 
of lines, where one discretizes the spatial part of the partial differential equation but 
leaves the temporal part as a continuous operator, usually solved by an ordinary 
differential equation integrator; however, in this case the spatial nodes move 
[14, 151. 

The method is especially suitable for parabolic or evolutionary problems where a 
steep front sweeps through the spatial domain. Nodes move smoothly to regions 
where they can minimize the error residuals and move continuously with steep 
fronts. Even for problems where a steep front may form later in time, i.e., the steep 
gradient is not present at initial time, the method gives accurate solutions. The 
advantage is that one needs fewer nodes than for an approximation method that 
has an evenly spaced fixed grid across the spatial part of the solution domain with a 
mesh size tine enough to capture the steepest gradients. 

Partial differential equation systems that would benefit most from such an 
analysis are those that contain phenomena with very different time scales and 
spatial profiles that are very steep in some regions, while essentially flat in other 
parts of the domain. Examples of such systems are combustors, and oil reservoirs. 
Unlike stiff sets of ordinary differential equations (ODES), we then have stiffness in 
space and time. Allowing the grid points to become degrees of freedom within the 
PDE solution allows the spatial stiffness to be resolved by allowing grid points to 

168 
0021-9991/86 $3.00 
Copyright 0 1986 by Academic Press, Inc 
All rights of reproduction m any form reserved. 



MOVING FINITE ELEMENT METHOD 169 

come closer together. At the same time, the set of ordinary differential equations 
calculating nodal amplitudes and nodal positions can be solved with a stiff tem- 
poral solver. 

The moving finite element is not a panacea for all problems. For a problem 
where there is a great deal of information content required and where high accuracy 
demands small time increments, the overhead due to the implicit set of ordinary dif- 
ferential equations resulting from the basic MFEM formulation may be 
prohibitively expensive. Just as there is a break-even point in temporal stiffness for 
solving ordinary differential equations when one shifts from Runge-Kutta-type 
methods to Gear-type methods, for example, so there is also a point in spatial 
stiffness when deforming element-type methods will be advantageous. MFEM has 
also been used for problems where there are two different characteristic velocities, 
such as in two pulses crossing each other in opposite directions, the soliton problem 
[5]. The method resolves this problem with great accuracy, but at the time of the 
pulses crossing we have found that the solution must be solved on an almost fixed 
mesh. Moving finite elements have also been extended to two dimensions which is 
not true of some other adaptive grid methods [2, 3, 7, 81. 

Moving finite element methods presented thus far have shown substantially bet- 
ter solutions over those available with fixed grid methods, however, the implemen- 
tation of these algorithms has not been studied in a fashion such that adaptive 
methods can become an alternative to existing solution methods. This work will 
show that the MFEM can be simply implemented using an existing ordinary dif- 
ferential equation integrator, LSODI [12]. No special software is needed. Use of 
the MFEM is very much like a typical method of lines solution, but there are some 
special considerations. There are two types of problems that must be dealt with 
when the spatial nodes are allowed to become degrees of freedom in the 
minimization of the approximation error. The first is that singularities are 
introduced by the choice of the approximation which can be dealt with by the 
systematic use of penalty functions. The second problem is that there is no unique 
solution to the positions of the nodes, and therefore nodes cross, destroying the 
initial mesh topology of the system. This problem has been dealt with by a minor 
addition to the LSODI code, which was the only modification to the ODE 
integrator necessary. 

2. THE ONE-SPATIAL DIMENSION FORMULATION 

Once the order of the numerical approximation to be used in an analysis has 
been established there are essentially two viewpoints with regard to reducing the 
solution error. One is to minimize the error, for a given number of nodes that will 
be used throughout the problem solution, by continuously varying the node 
positions. A second view is to add or delete nodes in local intervals to attain a 
desired performance. Of course, there are hybrids of the two approaches where for 
part of the temporal domain the grid number is fixed but the positions may or may 
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not move, and for other parts of time nodes are added or deleted. The moving finite 
element method is essentially the former approach, though it is possible to add or 
delete nodes. However, for many problems the insertion or deletion of nodes is 
obviated because of the very good solution properties of the basic method. 

The moving finite element method is different from most other adaptive grid 
methods in several important respects. No dependent variable transformations are 
involved, nor are any characteristic velocities, time scales, or spatial scales needed. 
One important practical feature is that the method actually minimizes the global 
error residual. Even though there may be many physical phenomena creating steep 
gradients at different times and spatial locations the solution is not tied to a par- 
ticular property. Since previous time-step information is used to calculate new node 
positions, large time-steps are allowed. 

Consider a single evolutionary equation of the form, 

ti = L(u), t > 0, (1) 

where L(U) is a nonlinear partial differential operator. The solution to u is 
approximated by a piecewise continuous function u, 

4x, t) = i a,(t) cqx, t), (2) j= I 
where u,(t) is the magnitude of the solution at node j and U/(X, t) is the 
corresponding basis function. In a deforming element approach the approximate 
solution is a time varying function of both the nodal amplitudes ai and nodal 
positions xj( t) 

v(t) = u(~,(t),.-, a,(t), Xl(f),..., x,(t)). (3) 

The nodal amplitudes are restricted to be finite, and the nodal coordinates are 
ordered in the following manner: 

xg <x,(t)<x,(t)< ... <x,(t)<x,+,. (4) 

The fixed left and right boundaries are denoted by x0 and x, + i 
Several of the current approaches to continually deforming finite elements share 

the same formulation for calculating the time-dependent values of the field variables 
(Lynch [ 131). The basis functions a, depend upon the space coordinates and the 
grid points xj 

ai(x, t, = ai(x, Xj(t))3 j = 1, 2 ,..., n. (5) 

If the approximation to u is differentiated with respect to time, then the temporal 
variation of u is given by 

ti= f ci,olj + i,,B,, (6) 
j= I 



MOVING FINITE ELEMENT METHOD 171 

where now the basis functions are given by, 

a0 
aJ =q p, =g,. 

J 

(738) 

Unlike a conventional fixed mesh finite element formulation d has two sets of basis 
functions aj and ai. Given a transformation between an element or local coordinate 
system 5, and the global coordinate system x, 

(9) 

it is readily shown that the gradients of the basis functions, ai, with respect to the 
node positions are 

V/-a, = - YJVai, (10) 

where V, is the gradient with respect to nodal positions. 
Note that the basis functions C(~ are changing with time. Differentiating cli with 

respect to time, at constant x, gives 

2 = c VjcqiJ = c - YjVciiij = - v’vct,, 
i i 

where the node velocity V” is given by 

If’= CijYi. (12) 

Clearly the node velocity is a function of all the mesh node velocities with the basis 
functions in the underlying transformed space. For this system the standard method 
of weighted residuals formulation is, 

( F cijctJ - V’. vv - L(v), Wi) = 0. (13) 

If W, are the basis functions, ai and the nodes are fixed, i.e., v’ = 0, then the usual 
Galerkin inner products result. The only difference between a moving node and a 
fixed node formulation is the presence of the node convection term V’. Vu that 
corrects the time derivative to account for element deformation. A deforming 
element approach may be specified by the weighting functions W,, and the manner 
in which V’ is determined. The node velocity terms can be specified by the velocities 
of the fronts in the solution, for example, if they are known. 

For example, Herbst et al. [9-111 have used a Petrov-Galerkin formulation or 
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an H-’ norm, to define the weighting functions for the inner products to calculate n 
nodal amplitudes and n nodal coordinates, 

(ti - L(u), SJ = 0, (14) 

(ti - L( II), Ti) = 0, (15) 

where Sj and Ti are the even and odd piecewise Hermite cubic polynomials. 

si = [c$(x)]‘[3 - 2!xi(X)], (16) 

Ti = [ai(x)]‘[aj(x)- l][dol,/dx]~’ 

aj= [x-x,-,]/[x, -xi -1-j x; , dX<Xi, (17) 

= Cxi+ I -xl/Cxi+ I -xil x; <x<x,+, 
=o elsewhere. (18) 

The moving finite element method of Miller et al. [4-6, 14, 151 seeks to calculate 
the node amplitudes and node positions at the same time. Given a residual R 
defined by 

R=ti-L(u) (19) 

Miller et al. used a least squares formulation that minimized the L* norm of R with 
respect to Lii and ii, thus defining both Wj and I/‘, 

(~d,ul+Z,B,Io.a,)=O. (20) 

(~d:,:tLi.8;-L~~~,~,)=O for i = l,..., IZ. (21) i i 

There are 2n variables and 2n inner product equations, making the node amplitudes 
and node positions completely defined through the set of coupled ODES. 

Note that in this approach, 

pi = - Y, C a,Va, = - Y,Vv. (22) 

The weights in the two sets of equations are ai, and pi, and an indeterminate set 
of equations results when the weights are not linearly independent. In the 
isoparametric case, ai = Yi, degeneracy occurs when some component of Vv is con- 
stant for any of the Yls. This difficulty can also occur in the Herbst et al. [9] for- 
mulation. There are two approaches to remedy this problem. The first approach is 
to provide some diagonal dominance to the implicit set of ODES and can be 
accomplished through the use of penalty functions. An alternative is to recognize 
that there are too many degrees of freedom and remove enough degrees of freedom 
to make the equation set nonsingular. 
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Herbst et al. [lo] have shown that for both the PetrovGalerkin and least 
squares formulations of the moving finite element methods the resulting coupled set 
of equations leads to a difference replacement of the PDE to calculate the nodal 
amplitudes. The addition of the node movement equations provide an 
equidistributing principle of the form, 

h~+‘u,,(xi-)=hJ~~u,~,(x~+)+O(h’+*), (23) 

where r = 0 for least squares, and r = 1 for PetrovGalerkin methods. The 
equidistributing principle result is useful analytically because it shows that even 
though completely different criteria are being used to specify the node movement, a 
similar type of error distribution results. Operationally it is not as useful since the 
0(/z’+‘) terms dominate for very steep fronts, and for a purely convective problem 
there are more important criteria driving the nodes than just the second-order error 
distribution. 

Consider a system of partial differential equations in one dimension 

u = (u’, u* )...) UP), L = (L’, LZ )..., LP), v = (v’, v2 )...) VP). (24) 

Let each component function vi, I = l,..., p, be defined by a piecewise continuous 
function 

The minimization is performed with respect to hf, ii, I = l,..., p and i= l,..., n. The 
penalized least squares function to be minimized is [S], 

min 
i 

i (ti’- L’(v))~+ 2 (Xjd.tj ---co,)* , (26) 
/= 1 ,=I I 

where the second summation includes terms to prevent degeneracy by penalizing 
relative node motion through the use of terms involving dij. 

If linear basis functions are used, 

a,(x) = 
X-XI-* 

xi -xi-,' 
X /-, <X<X,> 

= xj+l -x 

xj+ 1 -xj 

xi<x<xi+, 

=o elsewhere. 

If the gradient of v over the segment [x,~ i, xi] is denoted by, 

mj E (a, - aj- 1)/(X, -Tip 1) 

(27) 

(28) 
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then the second basis function flj is given by 

flj= -mjul Xi-, <X<X,, 

= -mi+,u, x, 6x<x,+1 

=o elsewhere. (29) 

The vector of unknowns containing the nodal amplitudes and coordinates is defined 
as, 

y E (a!,..., ap, x, ; a:,..., a<, x2;...; at,..., a:, x,)? 

Then the minimization of (26) results in a set of coupled ordinary differential 
equations of the form, 

A(.Y)Y= g> (30) 

where A is a block tridiagonal, symmetric, and positive definite matrix, with sub- 
matrices of size [p + l] x[p + 11, and of the form 

(ai, u,) (4, /$I 

CaiT a,) (ai3 Bf) 

Di., = (ai, q) (a,, PSI 

(Pt, a,)(@, a,)(Pp, aj) f (Pi, /$) + ATii. 
/= I 

(31) 

The subdiagonal, diagonal, and superdiagonal blocks are D,,, . , , Di,i, and D,., + , , 
respectively, and the additional terms AT,,j are given by 

Di,ipl (i= 2 ,..., n), ATi,jp 1 = - (Xl)‘, 

Di,j (i= I,..., n), AT,,; = (Xi)’ + vi, I I23 (32) 

Di,r+l (i= I,..., n- l), A T;,i + 1 = -(xi+ ,)2. 

The corresponding segment in the right hand side vector g is given by 

((ai, L1(u))>...,(ai, L’(u)), i (pi, L’(U)) + xiOj -Xi+ ICON+ 1). 
I=, 

(33) 

It is important to note that if a least squares formulation is used with linear basis 
functions then some of the inner products are not clearly defined. For example, if 
second-order differential operators are present then there will be discontinuities in 
the j? terms. Since delta functions are not part of an L2 space, mollification or 
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regularization can be used to obtain a smooth solution [ 11. In practise, terms of 
the form (pi, u,,) assume a mean value between intervals 

fly-= -(m;+m;+,)/2 atx,. (34) 

If a,, has a delta function of weight 

V .x.x =m,,, -mi 

then the delta function after mollification becomes 

(35) 

(36) 

Similarly, 

A catalogue of inner products is available in Gelinas, Doss, and Miller [S]. 

3. NODE CONTROLS 

The penalty terms used in the least squares formulation will prevent the system of 
ODES from becoming singular. They are required only when, 

Aa, = Aai, , = 0 

or 

mi=mi+,. (37) 

The penalty terms Xi and wi also prevent nodes from coming too close together. By 
controlling the node spacing the stiffness of the ODE set can be kept at manageable 
levels. Therefore, the selection of the Xi and wi functions is important in a robust 
and efficient implementation of the MFEM. However, one must remember they are 
required only because the basic formulation of the moving finite element method is 
singular for a number of important cases. Xi specifically monitors the relative node 
spacing, while wi takes into account the possibility that there may be no relative 
node movement, as steady state is approached or when nodes are brought together 
into a shock. In the degenerate case the penalty terms solely determine the solution 
in the local interval containing the singular set of equations. 

Though many different types of penalty forms have been tried, the basic 
requirements of Xi and wi are simple. Xi and wi cannot be functions of the nodal 
amplitudes, because this would change the classical finite element formulation 
embedded within the moving finite element method and destroy the conservation 
properties of the approximation. The penalty terms must only be a function of the 
nodal positions xi and must increase as the nodal positions approach one another. 

581/63/l-12 
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Consider solving a diffusion problem with a diffusivity of ,LL The inner products in 
the coupling matrix A are of the form 

(38) 

Therefore, to maintain balance between the solution and penalty terms Djohmeri 
[4] and Miller [16] have suggested, 

(39) 

where C, is a constant and 6 is a minimum approach distance. Note that as da, 
becomes very small then the g terms become important. Since dai is known only 
within an order of magnitude of the relative error tolerance E from the ODE 
integration, this then suggests that, 

Cl -O(E). 

If the constant C, is chosen a few times larger than the error tolerance then this will 
cause a smoothing of the node movement due to more drag on the nodes. 

Similarly, diffusive forces tend to keep the nodes apart, and in the degenerate 
case the right-hand side terms are augmented by 

(Cd’ 
x;0f -+(dXi - 6)2 (40) 

and an adequate form is 

c2 -O(E). 

In this case, it is better to have C, smaller than the truncation error because the 
nodes will come apart too quickly if there are no convective forces present and the 
solution has zero gradient. 

The only constants left for the user to choose are the ODE truncation error and 
the minimum node separation. In the examples to be presented it was found that 6 
is determined by the expected gradients within the problem itself, and therefore, is 
not really at the user’s discretion. The ODE truncation error E is very important 
because an excessively small error tolerance will lead to very many iterations in the 
ODE solver. The form of the penalty function given by (39) has been found to lead 
to nodes being convected upstream, leaving downstream regions depleted of nodes 
C4, 161. 

To examine the effect of these simple node controls consider the solution of the 
MFE equations on a segment of domain [xi-r, xi+ ,] with nodal amplitudes 
ai-1, ai, and a,+r at nodes xi- 1, xi, and xi+ I respectively. Consider the ith node 
equations, 
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CDi,i-~l{hi-~~~i-~}T+CDi,il{Cii~~i}T+~Di,i+Il{~i+l~~i+l}T 

= { tcli, L(u))9 (Pi9 L(u)) > T. (41) 

For linear finite elements, the left-hand side matrix submatrices for the ith rows 
appear as 

D;,;-1 = 
Ax;/6 - da,/6 1 -da,/6 mi Aa,/6-$ ’ (42) 

D;,; = (Axi + Ax, + 1)/3 - (Aa; + da;+ I)/3 1 -(Aa,+Aa,+,)/3 (mi Aai+mi+l Aa;+1)/3+Xf+Xf+1 ’ (43) 

Di,i+ I = 
AX;+ 116 -4+l/6 1 -Aai+,/6 m;+l Aa;+,P-g+, ’ 

(44) 

Consider the operator L(o) to be the diffusion term FLU,,. Therefore, using inner 
products for diffusion terms in Gelinas et al. [S] 

(@,, Uu)) = Ami+ 1 - 4, (45) 

(Di9L(u))= -(P/2)(mi+~i+1)(~;+1 -mi). (46) 

Both go to zero if mi+ 1 = mi, or if da,, Aai+ 1 = 0. For simplicity let the form of the 
penalty terms be 

xf = C$Ax;, (47) 

X-p; = C$Axf. (48) 

If Aa;, Aa;, 1 = 0, then only penalty terms will be left in the iith equation (41). 

c: . --xi-, +c; 
Ax; 

‘+ -- 
Ax; (49) 

If C, = 0, then the node velocity of xi is just a distance weighted average of its 
neighbors’ velocities (the constant C, becomes irrelevant for that equation though it 
is still acting as a velocity damping term for all the other MFE equations). 

For the case mi+ , = mi, (after pivoting) and C, = D (41) becomes, 

c: . 
daiXi-’ 

-cy 
( I 
J--+& ii+--&;+,=0 

I+1 ) rt I 
and the velocity ~2, is the weighted average of its neighbors 

Aa, 

-2; = (ii- 1 + wij+ I)/( l + W). 

(50) 
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Again, the constant C, is not important for that particular equation, and the nodes 
move to equalize the difference in nodal amplitudes between elements (an 
equidistribution of the nodal amplitudes). Similar results are seen when there are 
convective terms present in the differential operator. This equidistribution causes a 
slight lift-up of the front edge of a shock [ 15, 161. 

As stated earlier, these penalty terms are really only a device to add diagonal 
dominance to the equations in the case of singularity in the basic formulation; 
therefore, other schemes are possible. For example, node controls can be based on 
the use of gradients [6, 161 in a manner similar to techniques used in transfor- 
mation methods for adaptive gridding. In the MFEM, penalty forms using 
gradients have the effect of dampening the relative motion of the nodes as u 
becomes steeper. 

x- (C3)2(gradient)2 + (CJ’ 
I Ax,-6 dx,* (51) 

Since diffusion in the /I equations forces nodes apart, after they have resolved a 
steep gradient, another proposed technique is to add extra diffusion in the /I 
equation set [4, 161. In the /3 equations only, 

P-+/41 +a where O< EC 1. 

The value of E can actually be determined from a characteristic type analysis for 
simple equations to determine an E that will not give oscillations in the solution. 

When the problem has a near shock, i.e., becomes nearly a delta function, then 
the equations are essentially hyperbolic. In an L2 norm nodes are forced into the 
shock region. A solution to this problem is to use a different norm, a weighted L2 
norm [ 161. An example would be a gradient weighted norm, where m = u,, 

PV=(l +u;, ‘,2. 

With this weight the time derivative is normalized using an arc length transfor- 
mation resulting in a new set of weighted residuals, 

(u - L(u),ai) + (24 - L(u), a,w) = 0, 

(24 -L(u), pi) + (u-L(u), BiW) = 0. 
(52) 

As brought to our attention by Dr. R. Gelinas, a reviewer of this paper, Wathen 
et al. have some results with the MFEM with no penalty terms and we note their 
work for completeness. Wathen and Baines [17, 181 have studied the problems of 
adjacent elements having the same slope and shock formation. Instead of using 
penalty terms to prevent matrix singularity, Wathen suggests a two-part approach 
in maintaining A nonsingular. In the first step, the /I equation associated with the 
singular node is deleted and the equation i’I = 0 is used. The second step involves 
adding a multiple of the vector which spans the null space. The exact multiple is 
determined by some arbitrary criterion. 
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Wathen deals with the problem of nodes overtaking one another as indicative of 
shock formation in hyperbolic systems. The node amplitudes are made discon- 
tinuous, allowing two values for the node amplitude at a single spatial point. The 
parts of the solution are linked by a jump condition 

~, = lim So: ‘(‘) dx 
ii+l= I a*-a, ’ 

as 

a, -+a,, x1 +xi =x,+1 from the left, 

4 +aj+l, x* + xj = xi+, from the right, 

ai Z ai+ I ,* x,=x;+,. 

If the system is not hyperbolic this scheme will not represent the physical system 
correctly as pointed out by Wathen. The next section presents a simple scheme, 
using LSODI, which provides a way of recovering from an entangled mesh 
topology. 

4. THE PROBLEM OF NODE CROSSING 

The assumption at the beginning is that 

x, <x, < ... <Xi< ..’ <x, 

for all time, i.e., the node topology must stay the same and nodes may never cross. 
While the penalty functions will provide some resistance to node crossing, once 
they have crossed there is no force available to correct the mesh topology. By now 
the reader has probably observed that the nodes will follow characteristics of the 
governing PDE, if the exist. Therefore, it is easy to conceive of a case, for example 
counterstreaming pulses, where characteristics cross. Nodes following the respective 
pulses would cross when the pulses crossed, and the solution could still be defined. 
In the solution of certain types of problems with moving finite elements one 
encounters situations where a minimization of the error criterion leads to node 
crossing, which is an infeasible solution with regards to mesh topology restrictions. 
The objective was not to change any code in LSODI [ 111 (which was used as the 
temporal integrator for all the examples) to make it easier to use the method 
directly as though it were another method of lines. The problem of node crossing 
required a small addition to the LSODI code. Essentially another error norm is 
added for the corrector in the predictor-corrector algorithm of LSODI to check. 
The proposed fix is quite simple but seems to work well on cases tried thus far. 

Consider at time t an increasing sequence of positions of nodes 

x, <x, < .‘. <Xi <Xi+, < ... <x, at time t. 
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After taking a successful step At using LSODI based only on the error in the 
corrector, the mesh could appear as 

x, <x2 < ... <Xi+1 <x, < ..’ <x, at time t + At. 

The mesh topology has become tangled. There could be multiple crossings, or a 
node may move down the order of nodes many places. 

When the supposedly successful step has been made, find the pair of nodes xi and 
Xi+l3 that have the most negative value of xi+, -xi at time t + At (therefore, this is 
a max-norm), take the absolute value and call it Ax. Let the value of x, + I - xi at 
time t be Ax’, where dx’ > 0. The larger the ratio of Ax/Ax’, the more there is an 
overstep in time, and therefore At must be decreased by a larger amount. Call the 
time step h and the time step that would not cross the nodes h’. If the node 
positions are assumed to move linearly (a conservative assumption) in a time step, 
then by similar triangles, 

h-h’ Ax 
h’=dx” (53) 

If 

h'= fh (54) 

then the fraction,f, by which the time step A? must be reduced to maintain the node 
topology is given by 

It is reduced further to give a safety margin, h’ = + fh. LSODI has an algorithm 
to determine automatically whether the order of the approximation should be 
increased or decreased, and what the optimal step size reduction or increase should 
be. We take advantage of this simply replacing the corrector error normally used in 
the determination of the possible change in step-size, for the same order of 
approximation, by using the factorf: This addition has not affected the performance 
of LSODI appreciably. If there is no code crossing the usual corrector error is used 
to determine step-size changes. 

It is important to stress a number of points regarding the penalty functions. Node 
crossing generally occurs when a solution is forming a shock. The penalty functions 
will prevent nodes from coming too close together but once the nodes have crossed 
there are many solutions to the stationary conditions associated with the node 
topologies. The penalty functions are maintaining the solutions within a local 
region constrained by the initial node ordering. The reduction in time-step ensures 
that the solution does not leave the local region. If there were-no penalty functions 
the integrator would continue to allow the nodes to cross since this would be a 
valid solution to the error minimization. For a hyperbolic problem, Wathen’s jump 
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conditions [17, 181 at the singularity would be an alternative. However, even in 
Wathen’s approach, as noted by Wathen, a mechanism for reducing the time-step is 
necessary. 

5. EXAMPLES USING THE BASIC METHOD 

The set of subroutines called LSODI was used to solve the set of ordinary dif- 
ferential equations resulting from the application of moving finite elements. The 
only modification made to LSODI was that previously mentioned to account for 
node crossing. Many examples of other systems are presented in the work of Miller, 
Djomehri, and Gelinas, using their special codes, showing the accurate solutions 
possible with MFEM. Implementation of MFEM with LSODI is very 
straightforward. The penalty function form we used was 

(56) 

(57) 

where C, was lo-*, ten times the ODE solver truncation error requested which was 
lo- 3. CZ, was set at 10P8, so that its effect would be negligible. The minimum 
approach distance was set at half the minimum shock width of our test problems, 
6 = 5 x 10P5. These values were used for all MFE examples. 

The test equation was the viscous Burger’s equation 

with p= 10e3, 10P4. Th’ is equation is a simple analogue to the Navier-Stokes 
equations and serves as a model for many nonlinear wave propagation problems. 

Two sets of initial conditions were used. 

Case A. Step function 

x E co, 21, 

u(x, 0) = 0, x E [O.OO, 0.481, 

= linear, x E CO.48, 0.521, 

= 1, x E CO.52, 1.481, 

= linear, x E [ 1.48, 1.521, 

= 0, x E [ 1.52, 2.00-J 

u(0, t) = U(2, t) = 0, t 2 0. 
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Case B. Sine function 

u(x, 0) = sin(2nx) + isin( 

u(0, t)=u(l, t)=O, t > 0. 

The first set of initial conditions is very difficult to solve because of the sharp 
gradients present in the initial conditions. The second set of initial conditions are 
smooth and so conventional fixed mesh methods are adequate up to the point 
where the shock width becomes comparable to the grid spacing. Beyond that point 
the solution deteriorates rapidly. 

All cases were solved for t E [0, 11. This was sufficient to see a shock produced 
with a width of O(p). Figures l-7 are profiles for different cases at t = 0.5. 

Solving case A with a fixed mesh Galerkin finite element formulation with 100 
nodes using LSODI for the time integration produced solutions as shown in 
Figs. la and lb. For the case of p = lop3 the solution has some oscillations but one 
can discern the profile, while with p = lop4 the results are quite unacceptable. 

The same problem is solved using moving finite elements with 4, 11, and 21 
nodes for p = 10 p3 and 10mm4, with the results shown in Figs. 2aac, and 3a-c, respec- 
tively. Note that 4 nodes is the absolute minimum number of nodes needed to mark 
off the initial step profile. With a tenfold decrease in p the MFEM is still able to 
handle the solution with only 11 nodes. The initial positions of the nodes xi were, 

4 pts. 0.48, 0.52, 1.48, 1.52, 

11 pts. 0.20, 0.48, 0.50, 0.52, 
1.00, 1.48, 1.50, 1.52, 
1.60, 1.70, 1.80, 

21 pts. 0.20,0.40, 0.48, 0.50, 
0.52, 0.60, 0.70, 0.80, 
0.90, 1.00, 1.10, 1.20, 
1.30, 1.40, 1.48, 1.50, 
1.52, 1.60, 1.70, 1.80, 
1.90. 

Table I presents some statistics from the runs for Case A. Each triple in the table 
presents the number of time steps, the number of Jacobian evaluations, and the 
time (in DEC-20 CPU set) required for solution. For GFEM we present both the 
times for analytical and finite difference Jacobians; the difference is negligible. Finite 
differences are used to calculate the Jacobians used in the MFEM. With 11 nodes 
the MFEM gives very good solutions for about twice the computer time of the 
Gakerkin solution, but with much better solution accuracy. To obtain a fixed mesh 
solution with the same order of accuracy would require about ten times as many 
nodes, and this would require, using LSODI, more than ten times as much com- 
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FIG. 1. Galerkin finite element solution on a Fixed mesh of 100 nodes, at time f=O.5 for step pulse 
initial conditions; (a) p = lo-‘, (b) p = lo-“. 
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FIG. 2. Moving linite element solution, at time I = 0.5 for step pulse initial conditions, p = 10m3; (a) 
4 nodes, (b) 11 nodes, (c) 21 nodes. 
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FIG. 3. Moving finite element solution, at time t = 0.5 for step pulse initial conditions, p = 10 -“; (a) 
4 nodes, (b) 11 nodes, (c) 21 nodes. 

TABLE I 

Computational Statistics for the Numerical Solution of u, = - uu, + n~,~, for Step Pulse Initial 
Conditions for Time Interval [0, I]” 

GFEM-100 points MFEM 

Analytical 
Jacobian 

Difference 
Jacobian 4 pts 11 pt 21 pts 

p= 1om3 107 107 66 150 208 
10 10 14 II9 158 

10.8 11.0 3.4 22.1 52.1 
/I= IO-4 142 142 75 182 315 

9 9 51 139 235 
11.7 11.9 4.2 24.6 79.2 

’ Table values: time-steps, Jacobian evaluations, DEC-20 CPU sec. 
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V 

00 05 1.0 
X 

FIG. 4. Galerkin finite element solution on a fixed mesh of 100 nodes, at time 1=0.5 for sinusoidal 
initial conditions; (a) p = 10e3, (b) p = lo-“. 

puter time. Note that while the number of time steps for 11 points is 50% more 
than the 100 point fixed grid solution, the number of Jacobian evaluations is 10 
times more. Since the bandwidth of MFEM formulation for one equation is 3 as 
opposed to 1 for the fixed grid solution, there is a higher cost for a Jacobian 
evaluation. 

For case B, a 100 point fixed mesh GFEM is used with ,U = 10 3 and 10m4, with 
the results shown in Figs 4 aab. MFEM was used with 9 and 19 nodes, for 
p= 10P3, 1o-4 and the results are shown in Figs. 5aac, 6a-c. The initial positions 
of the grid points xi were determined by evenly dividing the interval [0, 11. Table II 
shows that while a 9 point MFEM gives excellent results, it requires only a little 
more computer time than the GFEM. 

1.5 
1.0 

2wTr -0.25Tc 0.2477  Tw  60 -9.12  TD 3 504167 0 0.0718  T96(2wTr -0.e 4-o8- 0.1399  0  0rl2c701289  Tw a ) T0.2r333504012  TD 38m7.5  Tc 0. .6001 0  TD 3  Tr -0.2-io2 little m 0 8 5 . 7 0 8 4   T D  3   T r  - 0 . 1 2 0 8 3 6 l 2 c 7 0 6  T c  0 . 0 2 r  
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FIG. 6. Moving finite element solution, at time f = 0.5 for sinusoidal initial conditions, p = IO-“; (a) 
9 nodes, (b) 19 nodes. 

The working vector space required by LSODI for the fixed mesh Galerkin for- 
mulation is 13n, where n is the number of nodes for one PDE. For moving finite 
elements the storage is 38n, but here n is much smaller. Typically MFEs used less 
than half the storage of the Galerkin mesh. As the Galerkin fixed mesh grows to 
obtain a lower residual error, the savings magnify. 

In summary, we found that a straightforward implementation of the moving 
finite element method with LSODI lead to reductions in computer time and storage 
for comparably accurate solutions. Coupled with the fact that the penalty terms can 
be specified a priori the MFEM offers a viable alternative to solution of difficult 
practical problems. 

TABLE I1 

Computational Statistics for the Numerical Solution of u, = - uu, + pu,, for Sinusoidal Initial 
Conditions for Time Interval [0, 11” 

GFEM-100 points 

Analytical Difference 
Jacobian Jacobian 9 pts 

MFEM 

19 pts 1915 

fi = 10-3 165 165 178 230 
21 21 113 177 

16.2 17.2 17.8 53.9 
p= 10-4 206 206 250 273 122 

15 15 173 194 12 
16.8 17.3 26.9 60.2 26.9 

r? Table values: time-steps, Jacobian evaluations, DEC-20 CPU sec. 
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6. FEWER DEGREES OF FREEDOM 

The previous section has shown that MFEM, for the same required accuracy, 
would take less time than a Galerkin method of lines approach. The question arises 
if it is possible to reduce the computer time further. As noted above, much of the 
time in MFEM is due to the highly nonlinear Jacobian. One way to reduce the time 
would be to reduce the number of moving nodes. However, even in the MFEM 
there is a point where the solution is not accurate (see Fig. 2a and 3a). One could 
update parts of the Jacobian rather than the whole matrix. Updating could be done 
by checking where the greatest changes have occurred in nodal positions and/or 
amplitudes. Similarly one could lump the Jacobian and only calculate diagonal 
blocks in the corrector iterations of the temporal solver. The idea of only updating 
parts of the Jacobian would require changing LSODI, which would require 
specialized programming and defeat the purpose of testing implementations that 
require minimum additional work. Another idea would be to use an operator 
splitting notion where certain parts of the domain or the governing equations are 
integrated more often, and the whole system integrated together after many of the 
smaller time-steps. Also, to save storage one could go to an iterative solver in the 
integrator. 

Since it is desirable to continue using LSODI the nonlinearity in the Jacobian is 
attacked directly. The moving finite elements are formulated so that only some of 
the node motions are directly minimizing the error, while the rest follow trajectories 
determined by criteria other than making the residual error orthogonal to some 
node motion. 

One could have some of the nodes fixed and others moving, but this would 
require a great deal of a priori knowledge about the solution. Another idea would 
have a subset of the nodes move and require a certain proportional spacing 
between the remainder of the nodes which are between the moving nodes, but this 
would lead to discontinuous grid motions (though it would reduce the number of 
ODES). From the analysis of the effect of penalty functions in the degenerate case, 
it can be seen that often node velocities are implicitly linked, but without regard to 
the residual error. The node positions continue to be smooth functions of time. 

If I is a subset of nodes chosen to minimize the residual error directly, then the 
MFEM equations are of the form 

(q, R) = 0, i= 1 )..., n, (59) 

(Pji, R)=“, j E I. (60) 

Penalty terms are included for the subset of nodes 1 minimizing the residual to 
maintain some control over mesh spacing. The rest of the nodes motions will be 
determined by, for example, 

(61) 
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X 

FIG. 7. Moving finite element solution, at time I = 0.5 for sinusoidal initial conditions, p = 10m4, 19 
nodes with 3, 7, 10, 13, and 17 used to minimize the residual. 

i.e., the node velocities are directly linked by averaging adjacent node velocities. 
There are still 2n ODES, but the /?-equations for many of them have been simplified. 

Burger’s equation is solved using case B, again with 19 moving nodes, and 
p = 10-4. Nodes 3, 7, 10, 13, and 19 are arbitrarily picked so that for these nodes 

(Pi, RI = 0, i= 3, 7, 10, 13, 17 

and for the remainder 
-i; 1 +2ii-.It,+, =o. 

The solution shown for t = 0.5 in Fig. 7 is almost identical in profile to Fig. 6c, 
though the node positions are different. The computer time, as shown in Table II 
under 19/5 is drastically reduced to 26.9 CPU seconds. This is about the same time 
as for fewer MFE nodes, but still gives the accuracy of a 19 node solution. 

This result begged the question of how many grid points are needed as degrees of 
freedom for the residual error minimization. When 3 nodes were used as degrees of 
freedom the solution showed some oscillation within the superelements, like that of 
a fixed mesh procedure. Five nodes worked very well. Logically only one degree of 
freedom node is needed to follow the shock, with other node velocities determined 
by that node’s velocity. However, more nodes are needed because of the simple 
averaging of the nodal velocities used, not taking into account gradient or cur- 
vature information. Therefore, some of the degrees of freedom monitor the changes 
in curvature, and others resolve the shock. 

This idea could be used to partition nodes so that a certain set of nodes only 
provides a solution in a distinct zone, which may be of some use in multiple dimen- 
sions where there is recirculation. 

When using a subset of nodes as independent degrees of freedom the penalty 
functions become much less important. In many cases the penalty functions are not 
needed at all. However, the penalty functions are needed whenever the slope may be 
constant over two whole superelements, i.e., all elements between two indepen- 
dently moving nodes j- 1 and j have the same slope as the elements between the 
independently moving nodes j and j + 1, which is true when there are many 
independently nodes or large piecewise linear segments in the solution. Note that in 
Wathen’s approach removal of the penalty terms is accomplished by adding the 
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fixed node equation and then moving a singular node to a desired relative position 
when the singular set of equations is detected at a particular time-step. These 
procedures are equivalent to our method of using fewer independent node positions 
as degrees of freedom to the problem which we feel is an appropriate way to view 
the numerical solution of the physical system, except we use fewer independently 
moving nodes throughout the total time interval. 

7. CONCLUSIONS 

The moving finite element method provides a viable means to reduce the com- 
puter time necessary to simulate problems with steep fronts. The MFEM has been 
implemented directly using a readily available integration package, and very good 
results have been obtained both in terms of accuracy and simulation cost. Analysis 
and review of the current moving finite element literature was carried out to deter- 
mine what might be stumbling blocks for an easy implementation of the method. A 
modification to the algorithm has been proposed which will further reduce the com- 
puter time necessary to obtain an accurate solution. We are presently working to 
apply this method to practical chemical engineering simulation and design 
problems where the analysis cost of these distributed parameter systems is 
significant. 
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